- The unit-distance graph G(ℝⁿ, || · ||): fix || · || on ℝⁿ. Let G = (V, E) with V = ℝⁿ and {x, y} ∈ E ⇔ ||x - y|| = 1. A ⊂ ℝⁿ is 1-avoiding if it is an independent set in G.
- Question: What is the supreme density m₁(ℝⁿ, || · ||) achieved by a 1-avoiding set in ℝⁿ?
- Motivation: lower bound for the chromatic number of \mathbb{R}^n .
- The Euclidean plane: Best construction: $m_1(\mathbb{R}^2, \|\cdot\|_2) \ge 0.229$. Erdös Conjecture: $m_1(\mathbb{R}^2, \|\cdot\|_2) < 1/4$. Best upper bound: $m_1(\mathbb{R}^2, \|\cdot\|_2) < 0.258795$.
- Let $\|\cdot\|_{\mathcal{P}}$ such that the unit ball \mathcal{P} tiles \mathbb{R}^n by translation.

Then $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) \geq \frac{1}{2^n}$.

• Bachoc and Robins Conjecture: in this situation, $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) = \frac{1}{2^n}$.

• Results:

- Voronoi region of A_n .
- Voronoi region of D_n : $m_1(\mathbb{R}^n, \|\cdot\|_{\mathcal{P}}) \leq \frac{1}{(3/4)2^n + n 1}$.

• n=3:

These results are obtained with combinatorial methods, by solving packing problems in discrete subgraphs.

- Open Questions:
 - Settle dimension 3, improve the bound for D_n.
 Is there a standard induced subgraph leading to the 1/2ⁿ bound?
 - Bounds coming from other methods, for instance involving Fourier transform of measures supported by the surface of the polytope. Asymptotic bounds?
 - What about other polytopes? (upper bounds and lower bounds)

???