- The unit-distance graph $G\left(\mathbb{R}^{n},\|\cdot\|\right)$: fix $\|\cdot\|$ on \mathbb{R}^{n}. Let $G=(V, E)$ with $V=\mathbb{R}^{n}$ and $\{x, y\} \in E \Leftrightarrow\|x-y\|=1$. $A \subset \mathbb{R}^{n}$ is 1 -avoiding if it is an independent set in G.
- Question: What is the supreme density $m_{1}\left(\mathbb{R}^{n},\|\cdot\|\right)$ achieved by a 1 -avoiding set in \mathbb{R}^{n} ?
- Motivation: lower bound for the chromatic number of \mathbb{R}^{n}.
- The Euclidean plane:

Best construction: $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \geq 0.229$.
Erdös Conjecture: $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)<1 / 4$.
Best upper bound: $m_{1}\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)<0.258795$.

- Let $\|\cdot\|_{\mathcal{P}}$ such that the unit ball \mathcal{P} tiles \mathbb{R}^{n} by translation.

Then $m_{1}\left(\mathbb{R}^{n},\|\cdot\|_{\mathcal{P}}\right) \geq \frac{1}{2^{n}}$.

- Bachoc and Robins Conjecture: in this situation, $m_{1}\left(\mathbb{R}^{n},\|\cdot\|_{\mathcal{P}}\right)=\frac{1}{2^{n}}$.
- Results:
- $\mathrm{n}=2$:

	$*$	$*$	$*$	\cdot
	\cdot	\cdot		-
	\cdot	\cdot	$*$	\cdot
	$*$	\cdot	$*$	+

- Voronoi region of A_{n}.
- Voronoi region of $D_{n}: m_{1}\left(\mathbb{R}^{n},\|\cdot\|_{\mathcal{P}}\right) \leq \frac{1}{(3 / 4) 2^{n}+n-1}$.
- $n=3$:

$\frac{1}{8}$

$\frac{1}{8}$

$\frac{1}{8}$

$\frac{1}{8}$

???

These results are obtained with combinatorial methods, by solving packing problems in discrete subgraphs.

- Open Questions:
- Settle dimension 3, improve the bound for D_{n}.

Is there a standard induced subgraph leading to the $1 / 2^{n}$ bound?

- Bounds coming from other methods, for instance involving Fourier transform of measures supported by the surface of the polytope. Asymptotic bounds?
- What about other polytopes? (upper bounds and lower bounds)

